GABA-independent GABAA receptor openings maintain tonic currents.
نویسندگان
چکیده
Activation of GABA(A) receptors (GABA(A)Rs) produces two forms of inhibition: phasic inhibition generated by the rapid, transient activation of synaptic GABA(A)Rs by presynaptic GABA release, and tonic inhibition generated by the persistent activation of perisynaptic or extrasynaptic GABA(A)Rs, which can detect extracellular GABA. Such tonic GABA(A)R-mediated currents are particularly evident in dentate granule cells in which they play a major role in regulating cell excitability. Here we show that in rat dentate granule cells in ex vivo hippocampal slices, tonic currents are predominantly generated by GABA-independent GABA(A) receptor openings. This tonic GABA(A)R conductance is resistant to the competitive GABA(A)R antagonist SR95531 (gabazine), which at high concentrations acts as a partial agonist, but can be blocked by an open channel blocker, picrotoxin. When slices are perfused with 200 nm GABA, a concentration that is comparable to CSF concentrations but is twice that measured by us in the hippocampus in vivo using zero-net-flux microdialysis, negligible GABA is detected by dentate granule cells. Spontaneously opening GABA(A)Rs, therefore, maintain dentate granule cell tonic currents in the face of low extracellular GABA concentrations.
منابع مشابه
Tonically active GABAA receptors in hippocampal pyramidal neurons exhibit constitutive GABA-independent gating.
Phasic and tonic inhibitory currents of hippocampal pyramidal neurons exhibit distinct pharmacological properties. Picrotoxin and bicuculline methiodide inhibited both components, consistent with a role for GABAA receptors; however, gabazine, at a concentration that abolished miniature GABAergic inhibitory postsynaptic currents and responses to exogenous GABA, had no effect on tonic currents. B...
متن کاملMuscarinic Long-Term Enhancement of Tonic and Phasic GABAA Inhibition in Rat CA1 Pyramidal Neurons
Acetylcholine (ACh) regulates network operation in the hippocampus by controlling excitation and inhibition in rat CA1 pyramidal neurons (PCs), the latter through gamma-aminobutyric acid type-A receptors (GABA A Rs). Although, the enhancing effects of ACh on GABA A Rs have been reported (Dominguez et al., 2014, 2015), its role in regulating tonic GABAA inhibition has not been explored in depth....
متن کاملMultiple and plastic receptors mediate tonic GABAA receptor currents in the hippocampus.
Persistent activation of GABAA receptors by extracellular GABA (tonic inhibition) plays a critical role in signal processing and network excitability in the brain. In hippocampal principal cells, tonic inhibition has been reported to be mediated by alpha5-subunit-containing GABAA receptors (alpha5GABAARs). Pharmacological or genetic disruption of these receptors improves cognitive performance, ...
متن کاملModulation of the input–output function by GABAA receptor-mediated currents in rat oculomotor nucleus motoneurons
The neuronal input-output function depends on recruitment threshold and gain of the firing frequency-current (f-I) relationship. These two parameters are positively correlated in ocular motoneurons (MNs) recorded in alert preparation and inhibitory inputs could contribute to this correlation. Phasic inhibition mediated by γ-amino butyric acid (GABA) occurs when a high concentration of GABA at t...
متن کاملPentobarbital and picrotoxin have reciprocal actions on single GABAA receptor channels.
Pentobarbital (PB) and picrotoxin (PIC) bind to allosterically coupled sites on the GABAA receptor complex but have opposite effects on GABA receptor currents. PB, an anesthetic/anticonvulsant, enhances, and PIC, a convulsant, inhibits GABA receptor currents. PB and PIC also had opposite effects on single main conductance channel GABA receptor currents recorded from excised outside-out patches ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 33 9 شماره
صفحات -
تاریخ انتشار 2013